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Abstract
In narrow Hall bars, 2.3µm wide, fabricated on a high-mobility GaAs/AlGaAs
single-heterostructure crystal, the temperature dependence of the diagonal
conductivity σxx in an integer quantum Hall regime (ν = 2 at B = 5.5 T)
almost vanishes below 4.2 K. This temperature-independent characteristic of
σxx is interpreted as being an intrinsic property of narrow Hall bars. It is
ascribed to elastic backscattering between edge states penetrating into the
interior region, where the penetration depth is suggested to be the localization
length, ξ ≈ 0.39 µm, of bulk localized states. Increasing the Hall electric field
Ey slowly increases σxx , which is interpreted as a consequence of Ey causing
ξ to increase by promoting the hybridization of bulk localized states.

The integer quantum Hall effect (IQHE) is a remarkable phenomenon of two-dimensional
electron gas (2DEG) systems in high magnetic fields, which is manifested by the vanishing
of the diagonal conductivity σxx and the quantization of the Hall conductivity σxy into integer
multiples of e2/h, where e is the unit charge and h is Planck’s constant [1, 2]. It is well
established for conventional Hall bars with device widths larger than a few tens of micrometres
that σxx strictly vanishes as the temperature, T , approaches absolute zero, but rapidly increases
with increasing T due to conductivity of the thermal activation (TA) type [3] or variable-range-
hopping (VRH) conductivity [4]. However, this widely known behaviour is expected to be
presented only when the device width,W , exceeds the inelastic scattering length, Lin, because
in either case the conductivity is expected to arise primarily from inelastic scattering processes.

If W < Lin, it is possible that elastic backscattering of electrons between opposite edge
states [5] dominates over inelastic scattering processes in the interior 2DEG region. Since the
elastic backscattering should be temperature independent in the linear transport regime, the
TA- or VRH-type conductivity may be replaced by a temperature-independent conductivity.
Since the backscattering may be mediated via bulk localized states [6], the localization length
of bulk localized states [7], ξ , will be an important length parameter in such a coherent
regime. Although deviation of the IQHE from exact quantization in narrow Hall bars has been
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reported [8], the characteristics of σxx were not studied and the role of elastic backscattering
in the IQHE remains unclear.

In the case where elastic backscattering of electrons serves as a dominant mechanism for
finite σxx , the effect of the Hall electric field, Ey , is of particular interest. This is because Ey
may promote hybridization of localized states [9]. Experimentally, σxx is known to increase
exponentially with increasing Ey [10–13]. Unfortunately, however, studying the microscopic
direct effect of Ey is hampered by a possible rise in the effective electron temperature,
Te [11, 13, 14].

In this work, we study σxx in relatively narrow Hall bars. First we find that the temperature
dependence of σxx practically vanishes. We estimate Lin from independent experiments—the
results suggest thatW < Lin—and interpret the findings in terms of elastic backscattering of
electrons mediated by bulk localized states. Secondly, in order to exclusively study the direct
microscopic effect of Ey , we study σxx by using voltage probes placed close to the electron-
injecting corner of the current contact. We find a slow increase of σxx with increasing Ey ,
which is consistent with an Ey-induced hybridization of electron states in random potentials.

Figure 1(a) schematically shows the Hall bars studied, which are fabricated on a
GaAs/AlGaAs modulation-doped single-heterostructure crystal with a sheet electron density
of 2.6 × 1015 m−2 and the electron mobility of 80 m2 V−1 s−1. The main Hall-bar channel
has an effective 2DEG width of W = 2.3 µm (3.0 µm in lithographic width) and a total
length of 334 µm. The 2DEG channel is jointed at the opposite ends to 2DEG pad regions

Figure 1. (a) A schematic representation of the Hall-bar sample studied. (b) The longitudinal
voltage V12 against the current for opposite polarities in the IQHE with ν = 2.
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100 µm wide, from which electrons are injected or withdrawn. Voltage probes, 1 (6), 2 (5)
and 3 (4), as identified in the diagrams in figure 1(b), are placed, respectively, at distances
of 6, 13 and 206 µm from the left end of the Hall-bar channel. In what follows, we denote
the longitudinal voltage studied with probes i and j by Vij . Experiments are carried out in
a T -range of 4.2 K–2.6 K at a magnetic field of B = 5.5 T, which corresponds to the IQHE
plateau centre with the Landau level filling factor of ν = 2.

A basic idea behind the present work is explained by figure 1(b), where V12/Lv with the
inter-probe distance Lv = 7 µm is displayed against the current I [15]. We note that cold
electrons (at the lattice temperature T ) are injected from one end of the Hall bar and travel along
the channel at the drift velocity Ey/B. For ‘positive polarity of current’, where the injection
point is the right-hand end of the 2DEG channel, the cold electrons are sufficiently heated up
by Ey during the travel, reaching the region probed by contacts 1 and 2. It follows that the
2DEG system is subject to the well known ‘current-induced breakdown’ of the IQHE, which
has been successfully explained in terms of a bootstrap-type electron heating (BSEH) [11–15].
The IQHE breakdown furnishes the curve of V12/Lv versus I with a stepwise rapid increase
at a critical current of about I = 3.5 µA. For negative polarity of I , however, the distance of
travel (6–13 µm) is too short for cold electrons to be appreciably heated up, and the V12/Lv
versus I curve shows no signature of IQHE breakdown. It has been suggested further that
the characteristic distance necessary for electron heating is typically more than 100 µm [14].
Hence, one may study σxx for cold electrons at finiteEy by investigating the values ofV12 (V65)

for negative polarity of I .
We are interested not in the IQHE breakdown but in the IQHE regime in the range of small

currents (|I | < 3µA), whereV12 is indiscernibly small in figure 1(b). To derive accurate values
of σxx in this range, we study the derivative, dV12/dI , as a function of I , by modulating I with
a 0.1 µA amplitude at 100 Hz, and derive V12(I ) through integration. Similarly, we study also
V23, V65 and V54 for both polarities of I . Figures 2(a) and 2(b) show, respectively for +I and
−I , values of σxx = ρxx/(ρ2

xx + ρ2
xy) ≈ (νe2/h)2ρxx , where ρxx = (Vx/Lv)(W/I) is derived

from Vx = (V12 + V65)/2. The current I is translated to Ey = ρxyI/W . (The critical current
of the IQHE breakdown, I = 3.5 µA, corresponds to Ey = 200 V cm−1.)

We note the following three features. First, for either polarity of I , the dependence of
σxx on T is surprisingly small. In particular, σxx is practically independent of T within the
experimental accuracy in the lower Ey-range below 100 V cm−1. Secondly, the dependence
of σxx on Ey is finite but small in the range Ey < 100 V cm−1. Thirdly, in the higher Ey-
range above 100 V cm−1, σxx increases with Ey more steeply for +I than for −I . As for the
first feature, the T -independent characteristics might result from non-equilibrium population
of edge states introduced by non-ohmic poor contacts [5, 16, 17]. However, this is ruled out
because (i) all of the contacts have been confirmed to be nearly ideal in the present work and
(ii) the data have been confirmed to remain unchanged upon reversal of the polarity of B. The
third feature reveals the presence of an appreciable electron heating effect even in the lower
Ey-range below the critical field Ey = 200 V cm−1 for +I , supporting the earlier analysis
by Boisen et al [13]. For −I , however, it suggests that the 2DEG is nearly free from the
heating effect.

Though not shown here, the first two features are present also if we derive σxx from
Vx = (V23 + V54). Hence, the absence of T -dependence as well as the weak Ey-dependence
are likely to be intrinsic characteristics of narrow Hall bars. We stress that these character-
istics are in marked contrast to the earlier-reported TA-type conductivity empirically described
as [11, 12]

σxx(T ,Ey) ≈ A exp[−(h̄ωc − eXEy)/2kT ] (1)
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Figure 2. σxx versusEy at different temperatures, for positive polarity (a) and negative polarity (b)
of the current. The inset shows similar data taken for a wider Hall bar [11].

where A = e2/h [3]. The inset of figure 2(a) displays an example for a Hall bar 40 µm wide
at B = 3.6 T (ν = 4) [11]. Here, X ≈ 0.7 µm (B = 3.6 T) is a constant and (h̄ωc = eB/m∗

is the Landau level energy spacing with B the magnetic field and m∗ the effective electron
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mass. The TA conductivity described by equation (1) would predict a decrease of σxx by a
factor about 2 × 103 as T decreases from 4.15 K to 2.63 K for h̄ωc = 9.4 meV (B = 5.5 T)
and Ey = 0. In the case of the VRH conductivity as well, the expected reduction is by more
than one order in magnitude. The data of figure 2 make it probable that the earlier-reported
Ey-dependence (equation (1)) arose primarily from the heating effect of electrons [13].

In the following discussion, we will concentrate our attention on the data taken with
negative polarity of the current in the rangeEy < 100 V cm−1 (figure 2(b)), where we suppose
the phenomenon to be substantially free from the effect of Te.

We first suggest that our conductor is in a coherent regime in the limit of small Ey . The
absolute size of the inelastic scattering length,Lin, of electrons in a bulk Landau level has been
derived by Machida et al through experimental studies of device-size scaling in IQHE trans-
ition regions [18]. The values derived are expressed as Lin = DT −1.5 with D = 1.0 µm K1.5

for a high-mobility 2DEG system at B = 2.4 T. We expect Lin to be, roughly, inversely
proportional to the density of states (DOS) of the Landau levels. It follows that Lin will take a
maximum value in the IQHE regime where the DOS takes a minimum value, as schematically
depicted with a solid line in figure 3(a). Scaling the result of Machida et al by assuming a
Gaussian DOS:

DOS(ε) = (π$2
B)

−1

[
(1 − x)

∑
n

(2π)−1/2%−1 exp −{(ε − εn)/
√

2%}2 + x/h̄ωc

]
(2)

with a constant background of x = 0.05–0.1 and %/(h̄ωc) = 0.05–0.1, we estimate Lin ≈ 5–
10 µm under the present experimental conditions at T = 4.2 K (B = 5.5 T). Since Lin(T , ε)
rapidly increases as T decreases, the estimation above shows that the inequalityLin > W holds
in the range of experimental temperature, explaining the absence of T -dependence for σxx .

Let us consider the mechanism of T -independent σxx . We note that σxx takes relatively
large values, σxx ≈ 1 × 10−9 '−1. In coherent conductors, σxx would strictly vanish if
elastic backscattering of electrons in one edge state to the opposite edge state is absent [5].
In true physical conductors with random potentials, edge states are expected to penetrate into
the interior 2DEG region by being hybridized with localized bulk states. A suitable measure
of penetration is the localization length, ξ(εF ), of bulk localized states [6], and an average
profile of the envelope function of the wave function in the widthwise y-directions may be
approximated as |)|2 = exp(−2y/ξ). Hence, we expect elastic backscattering to set in
when the device width, W , is reduced to a size comparable to ξ(εF ). To estimate ξ , we note
that ξ diverges at the centre of each Landau level, ξ(ε) ∝ |ε − εc|−ν [7], as schematically
represented by a dotted line in figure 3(a). Here, the critical exponent ν is experimentally
reported to be ν = 2–2.3 [6, 19] in the vicinity of εc. We can estimate ξ(εF ) under the
present experimental conditions, εF = εc ± h̄ωc/2, by extrapolating the data of Machida and
Komiyama for IQHE transition regions (εF ≈ εc) [6] to εF = εc ± h̄ωc/2. Assuming that the
relation ξ/$B ∝ |ε−εc|−ν holds outside transition regions and applying the DOS described by
equation (2), we obtain ξ(εF ) = 0.2–0.4 µm; these values are much larger than the magnetic
length $B = (h̄/e|B|)1/2 = 0.011 µm at B = 5.5 T, and not negligibly small compared toW .

Let us examine whether the estimated values of ξ given above are consistent with the
observed amplitude of σxx . If a conductor segment of length L and width W is connected to
ideal leads at the opposite ends, the probability of reflection of electrons entering the conductor
segment will be given by

1 − T = (L/ξ) exp(−2W/ξ) (3)

which gives

σxx = (2e2/h)(W/ξ) exp(−2W/ξ) (4)
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Figure 3. (a) A schematic representation of the inelastic scattering length, Lin, the localization
length, ξ , and the device width,W , as functions of energy, where εn and εn+1 denote Landau level
centres. (b) A simplified Landau level energy profile in long-range random potentials.

through the relation T = [1 + (ρxx/ρxy)(L/W)]−1 [20, 21]. Equation (4) predicts σxx =
1 × 10−9 '−1 (T = 1.3 × 10−5) if ξ = 0.36 µm is assumed for W = 2.3 µm. Hence, the
estimated values, ξ = 0.2–0.4 µm, are consistent with the experimentally found amplitude of
σxx , leading us to suggest that σxx is caused by the elastic backscattering of electrons between
opposite edge states.

We now wish to interpret the slow increase of σxx with increasing Ey . The dependence
found experimentally is empirically described by

σxx(Ey)/σxx(0) = exp(eYEy/h̄ωc) (5)

as shown by a dotted straight line in figure 2(b), where we take Y = 0.49 µm with
h̄ωc = 9.3 meV (B = 5.5 T) to fit the experimental data. Two possible mechanisms may
be considered, both of which are related to Zener-type elastic tunnelling of electrons [22, 23].
First, Zener-type tunnelling will promote inelastic scattering processes through creation of
non-equilibrium electrons. If Lin < W , σxx will thereby increase. Secondly, the process of
elastic tunnelling between different Landau levels will be promoted byEy leading to (coherent)
hybridization of localized states. This works to increase ξ with increasing Ey in a coherent
regime (W < Lin).

In any case, however, the Zener-type tunnelling is unrealistic if random potentials are
ignored: without random potentials, Y ≈ $B = (h̄/e|B|)1/2 = 0.011 µm is predicted by
equation (5), which has never been observed in existing experiments, and is of course far from
the present finding, Y ≈ 45$B .

We consider below a simplified picture that takes account of the effect of random potentials.
Slowly varying random potentials produce compressible and incompressible 2DEG subregions
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of submicron scales in the IQHE regime [24], as has been visualized via micro-probing
techniques [25–27]. The existence of such structures implies that the Landau level energy
fluctuates spatially with an amplitude of h̄ωc and that the highest occupied Landau level
and the lowest unoccupied Landau level touch the Fermi level forming a framework for the
structure. Figure 3(b) schematically illustrates the energy diagram, where we let Yr0 be the
characteristic distance between the top and an adjacent bottom in the fluctuation potential.
The local Fermi level has a slope εF = −eyEy in the widthwise y-direction. The distance,
Yr(Ey), over which an electron jumps in a Zener-type elastic tunnelling process decreases with
increasing Ey as Yr(Ey) = Yr0/[1 + (eYr0Ey/h̄ωc)]. Noting the overlap integral between the
initial- and final-state wave functions, we expect the probability of such an elastic tunnelling
process to be, roughly, proportional to exp[−(1/2)Yr(Ey)/$B2], which leads to equation (5)
with

Y = (Yr0/$B)2Yr0 (6)

on noting that $B � Yr0 or eYr0Ey � h̄ωc. Taking the experimental value, Y = 0.49 µm,
we have Yr0 = 0.039 µm from equation (6), which is comparable to the value estimated
from independent experiments [14]. The value also appears to be consistent with a size of Yr0
conjectured from direct images of similar 2DEG systems [25–27].

The above discussion suggests that a Zener-type elastic tunnelling process in slowly
varying random potentials is the origin of the slow increase of σxx with increasing Ey found
experimentally. Among the two specific mechanisms discussed in the paragraph including
equation (5), the second mechanism, in which ξ increases with Ey while the conductor
remains coherent (W < Lin), is suggested to be more probable, because of the absence
of any substantial T -dependence in the finite Ey-range (<100 V cm−1).

Finally, let us estimate the general critical width of the Hall bar, below which the T -
independent elastic backscattering dominates over the TA conductivity. Comparing the σxxs
given in equations (1) and (4) and ignoring a small logarithmic term, we can predict the
elastic-backscattering-induced conductivity to dominate over the TA conductivity whenW is
smaller than

Wc = (1/4)(h̄ωc/kT )ξ. (7)

Although values of ξ in different conditions are not very clear, the enhancement factor in
equation (7), h̄ωc/kT , readily exceeds 102 in familiar experimental conditions. If we assume
ξ to be of the order of a few submicrons (like in the present work),Wc can be larger than 10µm
if T < 1 K and B > 5 T. Thus the elastic backscattering between edge states is possibly a
general mechanism determining σxx at low T .

In summary, we have found that σxx in IQHE Hall bars 2.3 µm wide (ν = 2, B = 5.5 T)
does not show substantial T -dependence below 4.2 K, and that it slowly increases with
increasing Ey . The amplitude of σxx (1 × 10−9 '−1) in the limit of low Ey has been
reasonably explained in terms of the elastic backscattering of electrons between edge states
that are broadened widthwise through hybridization with bulk localized states (ξ = 0.36µm).
The increase of σxx with Ey has been ascribed to Ey promoting the hybridization of bulk
localized states in random potentials.

References

[1] von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 449
[2] Kawaji S and Wakabayashi J 1981 Physics in High Magnetic Fields ed S Chikazumi and N Miura (Berlin:

Springer) p 284
[3] Clark R G, Mallett J R and Haynes S R 1988 Phys. Rev. Lett. 60 1747



L696 Letter to the Editor

[4] Briggs A, Guldner Y, Vieren J P, Voos M, Hirtz J P and Razeghi M 1983 Phys. Rev. B 27 6549
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